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Abstract

Cardiovascular diseases hold significant importance
as global health concerns due to their alarmingly high
mortality rates. These diseases are characterized by the
heart's inability to supply sufficient blood to the body's
other organs. This inability of the heart can have severe
repercussions on a patient's health. Cardiovascular
diseases encompass conditions such as coronary artery
disease, heart failure, stroke, hypertension and various
other disorders that affect the heart and blood vessels.
A timely and accurate diagnosis is essential for a
patient's survival as well as for averting further loss.

This study presents an efficient method that helps in
identifying irregular heartbeats. The proposed method
uses an audio signal dataset that has been compiled
from general public as well as clinical studies. It uses
time-frequency heatmaps and deep convolutional
neural network to automate the classification of
heartbeat audio signals. An extensive process of
hyperparameter tuning to optimize the learning rate,
batch size and the number of epochs is used to enhance
the performance of the model. The experimental results
of the study show the effectiveness of the proposed
model in identifying irregular heartbeats. After doing
hyperparameter tuning, the proposed model obtains an
accuracy of 96% on the validation dataset.

Keywords: Cardiovascular diseases, Convolutional neural
network, Hyperparameter tuning, Mel-Frequency cepstral
coefficients, Phonocardiogram signals, Spectrograms.

Introduction

Cardiovascular disease (CVD) is one of the leading causes
of death worldwide. It resulted in over 17.9 million deaths in
2019°%. The primary reasons for CVD related mortality are
heart attacks and strokes. The low and middle income
nations bear the brunt of this burden. The increasing
prevalence of CVDs is attributed to various factors including
urbanization, poor diet, use of tobacco and restricted access
to healthcare amenities. Effective preventative and
controlling measures are therefore urgently needed. These
high rates are mostly the result of the disease's delayed
diagnosis and the failure of high-risk patients to follow

https://doi.org/10.25303/2012rjbt2550264

preventive advice from their healthcare professionals.
Anomalies in heartbeat are very important to detect since
they may indicate underlying heart conditions requiring
treatment.

Although electrocardiograms (ECG) and echocardiograph
are most commonly used ways to monitor cardiovascular
health, they can be time-consuming, inconvenient and may
require expertise. Therefore, convolutional neural networks
(CNNs) with deep learning (DL) abilities offer a feasible
solution to this problem by improving the speed and
accuracy of ECG interpretation®.

DL has revolutionized various fields by facilitating
machines to learn and make intelligent decisions from large
and complex data. These have the ability to extract
meaningful patterns from the raw data leading to advanced
capabilities in various applications and domains!. DL
models can be trained on physiologic time series data in the
medical field to find anomalies and patterns that can help in
early diagnosis. DL has done a tremendous job in the field
of audio processing by utilizing spectrograms, which is a
widely used technique for representing sound. It eliminates
the requirement of conventional audio processing methods
by relying on standard data preparation rather than manually
creating feature vector.

The architecture of CNN as explained by Goodfellow et al*!,
leverages spatial hierarchy and local connectivity to
automatically learn and extract meaningful features from
grid-like data, such as images. Nowadays, these are
extensively being used in various applications including
image  classification®,  object  detection®,  image
segmentation?®, face recognition?, assessing the risk of
Android applications®’, detecting improper face mask* and
healthcare imaging?”%8 etc.

By training on labeled datasets, CNNs excel at tasks like
distinguishing objects within images, localizing objects,
segmenting images into meaningful regions, identifying and
verifying individuals based on facial features and aiding in
medical imaging analysis. These capabilities highlight the
potential of CNNs in advancing medical diagnostics,
particularly in identifying irregularities in cardiovascular
functions. The components of CNN, their functions and all
other significant problems were discussed in detail by
Albawi et al. They also listed the factors that affect CNN's
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effectiveness. The absence of training samples with
annotations is the fundamental obstacle to the DL-based
classification of medical images. Wang et al?® showed how,
for small training samples, fine-tuning greatly increased the
classification accuracy of liver lesions.

Based on the electroencephalography (EEG) spectrogram
data, Mandhouj et al?! created a deep CNN model that was
effective in identifying and categorizing epilepsy seizures.
The experimental findings demonstrated the effectiveness of
the suggested strategy, which had an average accuracy rate
of 98.22% in identifying EEG signals. The approach for
classifying ECG arrhythmias proposed by Huang et al*6 used
two-dimensional (2D) deep CNN. Using the short-term
Fourier transform (STFT), five different forms of ECG time-
domain data were first transformed into time-frequency
spectrograms.  Finally, ECG arrhythmia types were
identified and classified using spectrograms of five different
arrhythmia types as inputs to the 2D-CNN.

Kaur et al?® proposed a unique framework based on grid-
search optimization to develop a DL model to predict the
early onset of Parkinson's disease, where several
hyperparameters had to be established and tweaked for
evaluation of the resulting DL model. Audio signal
processing is the process of applying complex algorithms
and methods to work with audio signals. Audio signals (both
digital and analog) are used to represent sound. Binary
representations contain digital signals, while electrical
signals contain analog signals. The time-frequency bands
must be balanced and unwanted noise must be removed
using this technique. Audio signal processing has a focus on
computational methods for manipulating sounds. It
minimizes or eliminates undesired noise like echo and over-
modulation by utilizing a variety of techniques.

Ming et al?? focused on the modeling and de-noising of audio
signals and applied broadly a variety of fundamental
concepts from digital signal processing before performing
spectrum analysis and applying filters to the audio signals.
The processing of audio signals in this work was realized
using the fundamental concepts of digital signal science and
the processing of speech signals was accomplished
extensively using signal extraction, amplitude-frequency
transform, Fourier transform, filtering and other methods. A
review of contemporary deep learning techniques for
handling audio signals was carried out by Purwins et al®*.
Hershey et al'* classified the soundtracks of a dataset of 70M
training videos (5.24 million hours) using 30,871 video-level
labels utilizing various CNN architectures. The research
investigated fully connected deep neural network (DNN),
ResNet, AlexNet, VGG and Inception.

Rong? suggested a novel machine learning (ML) method for
categorizing audio. The author discussed the four-layer
hierarchical structure of audio data as well as the three
different categories of audio data features: short time energy,
zero crossing rate and mel-frequency cepstral coefficients
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(MFCCs) which were further extracted to create the feature
vector. The research finally discussed the use of the support
vector machine classifier with a Gaussian kernel to
categorize audio data.

Numerous studies have employed various methods,
including segmentation, down sampling, feature extraction
and classification to forecast heart disease. ldentifying
abnormal behaviors in a certain context is both a challenge
and a necessity since we can quickly address a problem by
detecting an anomaly. A typical heartbeat has a distinct
pattern of "lub dub, dub lub," with the time between each
beat being longer than the time between each beat and
typically beats between 60 and 100 times per minute (lub and
dub). With symptoms of numerous heart diseases, a murmur
heartbeat sound has a noise pattern that whooshes, roars,
rumbles, or turbulent fluid between lub to dub or dub to lub.
Omarov et al?® implemented ML techniques for the detection
of heart disease using phonocardiogram (PCG) signals.

Gomes et al'® described a system for categorizing cardiac
sounds in the PASCAL challenge. The S1 and S2 heart
sounds, where S1 is lub and S2 is dub, were found using an
algorithm. To reduce the noise in such signals, they first
employed a band-pass filter after using MATLAB decimate
function on the original sound stream. The average Shannon
energy was then applied, which helped to clearly detect the
peaks of the heart sound signal. The segmentation of the
heartbeat sound was achieved using an algorithm in which
the maxima and minima locations of the sound signal were
located. The model was trained using the J48 and multilayer
perceptron method. Similarly, Jadhav et al'” suggested a
novel method of categorizing heart sounds into the normal
or murmur category using a peak identification approach
based on Shannon energy envelope calculation and neural
networks.

A cutting-edge classifier for the early diagnosis of cardiac
diseases was developed by Wolk et al*® using CNN and
multipart interactive training. Over 93% accuracy was
achieved in the experiments utilizing the ResNet pre-trained
network.

Kaisti et al'® proposed a technique that employed
miniaturized inertial sensors to assess the chest's pre-cordial
translational and rotational motions. The algorithm
eliminated motion artifacts chose the optimal axis from the
multi-axial accelerometer and gyroscope data sets and
located beats using two detection concepts based on the
signal envelope and signal morphology. The authors
compared the detection performance between the sensor
modalities in two study groups: (i) healthy subjects and (ii)
heart disease patients. The research also took account of the
beat-to-beat detection accuracy and estimated the heart rate.
For healthy people, the average true and positive prediction
rates of beat detection were 99.9% and 99.6% whereas for
heart disease patients, these rates ranged from 95.9% and
95.3%.
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Although high-accuracy beat detection was accomplished
for heart disease patients, location matching was found to be
less accurate in such individuals when compared to healthy
subjects. Rubin et al?® described an automated heart sound
classification technique that blends deep CNNs and time-
frequency heatmap representations.

From the literature review, it is clear that various DL
methods are used for the classification of heartbeat sounds;
however, these are limited by things such as large, annotated
and high-dimensional datasets. The proposed method
overcomes this drawback by combining spectrogram
analysis and DL for extracting features. Further, the
proposed approach combines clinical and manually gathered
data (via a mobile application), thereby augmenting
accessibility for a wider demographic. The proposed
approach demonstrates efficacy even with poor quality audio
signals. It overcomes the constraint of data accessibility
encountered by earlier research.
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The main aim of this study is to create an accurate,
automated approach for detecting heartbeat
anomalies using time-frequency heatmaps and CNN model.
The primary contributions include:

o Creation of a system that can precisely classify irregular
heartbeats using time-frequency heatmaps and CNN.

e Examining the best accuracy that is attained by adjusting
hyperparameters.

Material and Methods

The workflow used in this methodology is depicted in figure
1. Four separate phases comprise the entire methodology:
data collection, data preparation, feature extraction and
model building. This is followed by hyperparameter tuning
and result analysis. The description of each phase is given as
follows:
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Fig. 1: Workflow of the proposed methodology.
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Data Collection: The heartbeat sound dataset used in this
work is obtained from Kaggle®. It was first used in a ML
competition for heartbeat sound classification®. According to
the source of the data, it is divided into two sets. The first set
A consists of 176 audio signals which are collected from the
general population using the I-Stethoscope Pro iPhone
application, whereas the second set B is made up of 656
audio signals collected from a clinical trial carried out in
hospitals using the DigiScope digital stethoscope.

Data Preparation: To ensure stable data representation and
to retain contextual information, this study used files that are
longer than 4 seconds. This approach means that the length
of every sample in the dataset is uniform, which helps to
make data analysis easier and more efficient by keeping ML
and DL models training consistent at all times. The reason
for choosing a 4-second segment is to ensure that training
and analysis are not burdened by an unmanageable amount
of data, while at the same time including enough contextual
information in audio signals. For longer segments, more
computational resources are needed. A too short segment
would not produce accurate data for analysis.

To reduce noise resulting from physical contact between the
microphone and the body, an offset computation is utilized
to account for the extra space in audio files.

The labels provided in the dataset are used to classify the
audio files as ‘normal’ or ‘abnormal’ after the proper
segment size has been chosen. This labeling helps to classify
heartbeat sounds as either indicative of a healthy heart or
exhibiting an anomaly. Subsequently, the data is shuffled to
avoid any bias or pattern in the sequence. The shuffling step
helps in ensuring the model's robustness and generalization
performance, as the model does not learn any particular
sequence or pattern in the input data. The resulting dataset at
this stage contains two types of audio data: 148 normal and
96 abnormal audio files. The data is subsequently split into
training and validation data in the ratio of 80% (195 audio
files) and 20% (49 audio files) respectively. The 1D time
series input segments are transformed into 2D spectrograms
(heatmaps) using MFCCs, which display the distribution of
signal energy over time and frequency.

Feature Extraction: Mel spectrograms and MFCCs are
widely used in audio signal processing and analysis,
particularly for speech and music recognition tasks. Both
representations capture essential information from the audio
signal, transforming it into a format that facilitates pattern
recognition and classification. Mel spectrograms are
computed from the STFT of an audio signal, which converts
the time-domain signal into a time-frequency representation.
The STFT is performed by applying a sliding window to the
signal and computing the discrete Fourier transform (DFT)
of the windowed segments. The Fourier transform allows us
to represent the signal as a sum of sinusoids with different
frequencies and amplitudes. Mathematically, the DFT is
defined using eqg. (1):
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where x(n) denotes the input signal, N represents the
quantity of samples, j is an imaginary unit (j2 = —1) and
X (k) serves as the frequency-domain portrayal of the said
signal.

Upon computation of the STFT, the resultant spectrogram is
converted to the Mel scale, a scale that is perceptually
motivated and strategically designed to more accurately
portray human auditory perception. The Mel scale
emphasizes lower frequencies while compressing higher
frequencies, simulating the non-linear frequency resolution
of the human auditory system. MFCCs are derived from the
Mel spectrogram. These are obtained through the application
of the discrete cosine transform on the logarithmic Mel-
scaled power spectrum. This process decorrelates the
spectral coefficients, resulting in a compact and robust
representation of the audio signal. MFCCs capture the
spectral envelope of the signal, which is particularly useful
for distinguishing different phonemes in speech and
identifying musical characteristics such as timbre.

In this study, a custom function is defined to process the
audio data by extracting MFCC features. This function takes
an audio file's path and an offset as input parameters, loads
the audio file with duration of 4 seconds starting at the given
offset, computes the Mel spectrogram and subsequently
extracts 40 MFCC features. This function is applied to both
the training and validation datasets, obtaining feature arrays
and their corresponding labels. The audio data, stored in the
Waveform Audio File Format (.wav), represents 1D time
series signals. Transforming these signals into 2D heatmaps
like Mel-spectrograms and MFCCs, captures the time-
frequency patterns of the signals. It makes them more
informative for analysis purpose.

Acquiring data using different tools like digital stethoscope
or a cell phone microphone, can result in variations in
amplitude ranges. The process of converting data into the
frequency domain yields more consistent and reliable
results. To facilitate the efficient use of CNNs for
classification tasks, the original time series audio data in this
study is converted into 2D heatmaps. When compared to
using raw time series data alone, this leads to the extraction
of more relevant and discriminative features from the audio
signal which improves classification performance. The study
intends to improve the efficacy of the presented framework
by developing an accurate and robust classifier for
differentiating between usual and anomalous cardiac sounds
by using CNNs on Mel spectrograms and MFCCs.

Model Building: The 40x130 MFCC heatmaps that
represent cardiac sound segments, are precisely analyzed
and classified by the CNN architecture used in this work.
Convolutional layers, fully connected layers and SoftMax
classifiers are the components of this CNN that work
together harmoniously to produce a binary classification
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output that indicates whether the input segment corresponds
to a normal or abnormal heart sound.

Four convolutional layers make up the model and they are in
charge of gathering and extracting local attributes from the
input MFCC heatmaps. Four max-pooling layers are added
after these convolutional layers to reduce the feature maps'
spatial dimensions and improve the model's capacity to
manage translation variation. To reduce overfitting and
improve the model's ability to generalize, the architecture
additionally has four dropout layers. A global average
pooling layer efficiently condenses the obtained
characteristics into a fixed-size vector by combining the
feature maps. Lastly, a dense layer is used to perform the
classification task using the aggregated feature vector.

The convolutional layers use the rectified linear unit (ReLU)
activation function. ReLU is preferred because it can solve
the vanishing gradient problem and is computationally
efficient in both the training and validation stages. ReLU'’s
selection as the activation function is a key factor in
improving the CNN's general resilience and performance
which helps it to distinguish between normal and abnormal
heart sounds.

Adam is selected to be the optimizer for this study because
of its widespread use in DNN optimization. Adam can
handle big datasets and parameters because it is
computationally efficient in terms of both time and memory.
Moreover, Adam is insensitive to gradient scaling, which
leads to increased stability and reduced responsiveness to the
selection of hyperparameters.

Hyperparameter Tuning: In order to achieve optimal
performance, the study explores various sets of
hyperparameters.

e Learning Rate: One crucial hyperparameter that
controls the number of iterations needed for the model to
minimize the loss function is the learning rate. Selecting
a larger value of learning rate allows the model to learn
faster. The drawback is that there is a chance that it will
surpass the minimum loss function. On the other hand, a
lower value of learning rate increases the likelihood of
obtaining the minimum loss function though it requires
more memory.

e Batch Size: The batch size is very important in
determining the number of subsamples of the input
training data used in each iteration. A smaller value of
batch size accelerates the learning process but it may lead
to variability in the accuracy of the validation dataset. On
the other hand, a larger value of batch size delays the
learning process while declining the variance in the
accuracy of the validation dataset.

e Epochs: Small value of epochs can result in underfitting
which means that the model has not learned enough from
the training dataset. Too many epochs can result in
overfitting indicate that the model performs well on the
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training dataset but struggles to generalize to new data.
The optimal number of epochs must be determined to
achieve the best results.

Evaluation Metrics Used: The proposed model is evaluated
using the evaluation metrics, namely, Precision, Recall, F1-
Score, Accuracy and Loss. These are computed from the
fields of the confusion matrix i.e. True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN).
TP refers to the correct classification of abnormal heartbeat
sounds as abnormal. FP denotes the incorrect classification
of normal heartbeat sounds as abnormal. TN represents the
accurate classification of normal heartbeat sounds falling
within the normal category, while FN signifies the mistaken
classification of abnormal heartbeat sounds as normal. By
utilizing these conventions, the ensuing discussion provides
insights into the classification outcomes and their
implications for accurately identifying normal and abnormal
heartbeat sounds.

e Precision: Precision is defined as the ratio of TP
predictions (i.e. instances correctly identified as
belonging to a specific class) to the total instances
predicted as belonging to that class. It measures the
accuracy of positive predictions made by the classifier.
Mathematically, precision is defined using eq. (2):

TP
TP+FP

Precision = (2)

e Recall (Sensitivity): It is defined as the ratio of TP
predictions (i.e. correctly identified instances of a class)
to the total actual occurrences of that class. It measures
the classifier's ability to identify all relevant instances of
a class. Mathematically, recall is defined using eq. (3):

TP
FN+TP

Recall = 3)

e F1-Score: It is the harmonic mean of precision and
recall. It is particularly useful when working with
imbalanced datasets because it provides a single metric
that balances the trade-off between precision and recall.
Mathematically, F1-Score is defined using eq. (4):

F1— Score = 2x(Precision*Recall) (4)

(Precision+Recall)

e Accuracy: The correct number of predictions to total
instances in the dataset is called accuracy. Although it
gives a broad picture of the classifier's performance, it
can be misleading when working with datasets that are
unbalanced. Mathematically, accuracy (%) is defined
using eq. (5):

TP+TN

Accuracy(%) = —————
¥ (%) TP+TN+FP+FN

*100 )

e Loss: The metric of loss measures the discrepancy
between the true value of a single sample and the value
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projected by the model. In this study, the categorical
cross-entropy loss function is utilized. Mathematically,
loss is defined using eq. (6):

1 ~ ~
Loss = =~ XiLy[yilogy; + (1 —y)log(1 - 9] (6)

where N stands for the sample size, y; € {0,1} is the true
label of the it" sample and J; is the predicted probability
of the positive class for that sample.

Results and Discussion

A 64-bit operating system and Intel® CoreTM i5-10300H
processor together with 8 GB of installed memory (RAM)
along with Python (version 3.7.15) with Numpy (version
1.21.6), Pandas (version 1.3.5), Librosa (version 0.8.1),
Sklearn (version 1.0.2) and Keras (version 2.9.0) libraries
are used while conducting the experiments. In the proposed
2D CNN model, learning rate, batch size and the number of
epochs are three critical parameters. Optimizing these model
parameters is essential to achieve the best classification
performance for PCG heartbeat signals. A series of
experiments are conducted to assess the impact of learning
rate and batch size on the performance of the proposed 2D
CNN model. Initially, trials are performed with different
learning rates while keeping the batch size and number of
epochs constant. Table 1 presents the variations in the
model's accuracy with changes in the learning rate.

Figure 2 illustrates the variation in the model's validation
accuracy as the learning rate is altered from 0.0001 to 1.0
while keeping the batch size constant at 128 and training the
model for 300 epochs. It is evident that the validation
accuracy increases as the learning rate is raised. The
validation accuracy reaches its peak value of 95.91% at a
learning rate of 0.01, which is a commonly used value in the
literature. However, beyond this point, the validation
accuracy declines sharply to 57.14% when the learning rate
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is set to 1.0. Consequently, a learning rate of 0.01 emerges
as the most optimal setting for the model, providing the
highest validation accuracy.

Table 1
Validation accuracy with varying learning rates for
batch size = 128 and epochs = 300

Learning Rate Validation Accuracy
0.0001 0.71428
0.001 0.79591
0.01 0.95918
1.0 0.57142

After determining the optimal learning rate for the model,
the next step is to experiment with different batch sizes. The
model is trained with epochs = 300, learning rate = 0.01 and
batch sizes ranging from 16 to 256. The results of these
experiments, with a fixed learning rate and epochs with
varying batch sizes, are presented in table 2. As shown in
figure 3, the model achieves highest validation accuracy of
93.87% at a batch size of 16. The validation accuracy
gradually decreases up to a batch size of 64. There is a
sudden increase in validation accuracy at a batch size of 128,
but it drops significantly to 69.38% when the batch size is
increased to 256. Based on these findings, a batch size of 16
is determined to be the optimal choice for the model.

After determining the optimal learning rate and batch size,
the accuracy of the proposed model is evaluated by gradually
increasing the number of epochs during training. Table 3
presents the validation accuracy with varying epochs (from
50 to 400) for batch size set to 16 and learning rate set to
0.01. By comparing the outcomes of different parameter
configurations, the goal is to identify the most effective
combination of learning rate and batch size, which would
improve the overall performance and generalizability of the
2D CNN model in heartbeat anomaly detection.

Average Validation Accuracy with Varying Learning Rates

@ Average Validation Accuracy
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Fig. 2: Average validation accuracy with varying learning rates for batch size = 128 and epochs = 300
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Table 2
Validation accuracy with varying batch sizes for learning rate = 0.01 and epochs = 300
Batch Size Validation Accuracy
16 0.93877
32 0.83673
64 0.75510
128 0.85714
256 0.69387

Average Validation Accuracy with Varying Batch Sizes

@ Average Validation Accuracy
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Fig. 3: Average validation accuracy with varying batch sizes for learning rate = 0.01 and epochs = 300

Table 3
Validation accuracy with varying epochs for batch size = 16 and learning rate = 0.01
Epochs Validation Accuracy
50 0.83691
100 0.85714
150 0.77551
200 0.89795
250 0.91836
300 0.95918
350 0.93877
400 0.8776

Average Validation Accuracy with Varying Number of Epochs

@ Average Validation Accuracy
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Fig. 4: Average validation accuracy with varying number of epochs for batch size = 16 and learning rate = 0.01
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The change in model accuracy with varying epochs is
visualized in figure 4. It shows that the model achieves the
best accuracy of 95.92% at 300 epochs.

After performing hyperparameter tuning, the optimal values
for the parameters are identified. These values are used to
build the final CNN model, which is then trained and
evaluated. The chosen parameters for the final model are
shown in table 4.

Table 4
Parameters of the final proposed CNN model.
Parameters Values
Learning Rate 0.01
Optimiser Adam
Batch Size 16
Epochs 300

With these hyperparameters, the model is trained. Loss and
accuracy for training and validation parts of the dataset are
recorded over the epochs ranging from 0 to 300 as shown in
figure 5 and figure 6 respectively. Figure 5 shows that the
model starts with an initial training and validation loss of
approximately 5.5. A significant drop is observed in the first
50 epochs where both losses reduce to around 1.0, marking
a rapid learning phase. Beyond 50 epochs, the losses
stabilize, showing minor fluctuations while remaining below
1.0. By the final epoch, the training loss reaches
approximately 0.4 and the validation loss is around 0.5
demonstrating effective convergence, minimal
generalization error and strong performance of the model
with optimal hyperparameters.
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Figure 6 illustrates that the model starts with an initial
accuracy of approximately 60% for both training and
validation parts of the dataset. During the first 50 epochs,
accuracy improves significantly, reaching around 83%. By
the final epoch, training accuracy reaches close to 98% while
validation accuracy stabilizes at approximately 96%,
indicating excellent generalization and strong performance.

A thorough evaluation of the classifier's capacity to
distinguish between normal and abnormal heart sounds for
the validation data is provided in the classification report in
figure 7. It provides an assessment of the proposed CNN
model to detect heartbeat anomalies. A number of significant
metrics that highlight the performance of the model, are
shown in the report.

The model provides a precision of 0.93 for the abnormal
class, which assesses the accuracy of positive predictions.
This shows that when the model correctly predicts an
abnormal heartbeat sound, it does so 93% of the time. The
precision is 1.00 for the normal class which demonstrates a
perfect accuracy in predicting normal heartbeat sounds. The
proposed model identifies all real abnormal heartbeat sounds
with a recall value of 1.00 for the abnormal class. Recall
value for the normal class is 0.90 which means that only 90%
of the actual heartbeat sounds are captured by the model. The
F1-Score is a metric that combines precision and recall. For
abnormal class, its value is 0.97 and for the normal class it
is 0.95. The support metric reveals that there are 28 samples
of abnormal and 21 samples of normal heartbeat sounds. The
overall accuracy provided by the proposed model is 96%.

Loss Curves
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Fig. 5: Loss curves for proposed CNN model.
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Fig. 6: Accuracy curves for proposed CNN model.
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Fig. 7: Classification report for validation data using proposed CNN model

Conclusion

This study proposed a time-frequency heatmap and deep
CNN-based approach for automating heartbeat anomaly
detection. The proposed approach demonstrated the ability
of CNN to effectively classify recordings of normal and
abnormal heartbeats. The proposed CNN model provided an
overall accuracy of 96% with precision, recall and F1-Score
as 0.96. The proposed work proved its efficacy in finding
patterns in heart sound data by using MFCCs for feature
extraction and creating a customized CNN architecture. The
efficacious execution of proposed approach holds the
potential to exert a substantial influence in the field of
medicine, enabling medical practitioners to promptly
identify and manage cardiac complications, thereby
enhancing patient outcomes and elevating their standard of
living.

In future, we intend to focus to encompass a plethora of
distinct domains in order to further augment the efficacy and
generalizability of the heartbeat anomaly detection
paradigm. To complement the MFCCs and to enhance the
classifier's ability to distinguish normal heart sounds from
abnormal heart sounds, additional characteristics such as
spectral and temporal aspects of the audio data will be
considered. The dataset will be expanded to encompass more
diverse and extensive recordings derived from a variety of
sources, demographics and medical conditions using big
data techniques®?*3. It will help the classifier capturing the
heart sounds' variability more effectively, thus providing
more robust and accurate results.
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