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Abstract 
Cardiovascular diseases hold significant importance 

as global health concerns due to their alarmingly high 

mortality rates. These diseases are characterized by the 

heart's inability to supply sufficient blood to the body's 

other organs. This inability of the heart can have severe 

repercussions on a patient's health. Cardiovascular 

diseases encompass conditions such as coronary artery 

disease, heart failure, stroke, hypertension and various 

other disorders that affect the heart and blood vessels. 

A timely and accurate diagnosis is essential for a 

patient's survival as well as for averting further loss.  

 

This study presents an efficient method that helps in 

identifying irregular heartbeats. The proposed method 

uses an audio signal dataset that has been compiled 

from general public as well as clinical studies. It uses 

time-frequency heatmaps and deep convolutional 

neural network to automate the classification of 

heartbeat audio signals. An extensive process of 

hyperparameter tuning to optimize the learning rate, 

batch size and the number of epochs is used to enhance 

the performance of the model. The experimental results 

of the study show the effectiveness of the proposed 

model in identifying irregular heartbeats. After doing 

hyperparameter tuning, the proposed model obtains an 

accuracy of 96% on the validation dataset.  
 

Keywords: Cardiovascular diseases, Convolutional neural 

network, Hyperparameter tuning, Mel-Frequency cepstral 

coefficients, Phonocardiogram signals, Spectrograms. 

 

Introduction 
Cardiovascular disease (CVD) is one of the leading causes 

of death worldwide. It resulted in over 17.9 million deaths in 

201931. The primary reasons for CVD related mortality are 

heart attacks and strokes. The low and middle income 

nations bear the brunt of this burden. The increasing 

prevalence of CVDs is attributed to various factors including 

urbanization, poor diet, use of tobacco and restricted access 

to healthcare amenities. Effective preventative and 

controlling measures are therefore urgently needed. These 

high rates are mostly the result of the disease's delayed 

diagnosis and the failure of high-risk patients to follow 

preventive advice from their healthcare professionals. 

Anomalies in heartbeat are very important to detect since 

they may indicate underlying heart conditions requiring 

treatment.  

 

Although electrocardiograms (ECG) and echocardiograph 

are most commonly used ways to monitor cardiovascular 

health, they can be time-consuming, inconvenient and may 

require expertise. Therefore, convolutional neural networks 

(CNNs) with deep learning (DL) abilities offer a feasible 

solution to this problem by improving the speed and 

accuracy of ECG interpretation6. 

 

DL has revolutionized various fields by facilitating 

machines to learn and make intelligent decisions from large 

and complex data. These have the ability to extract 

meaningful patterns from the raw data leading to advanced 

capabilities in various applications and domains11. DL 

models can be trained on physiologic time series data in the 

medical field to find anomalies and patterns that can help in 

early diagnosis. DL has done a tremendous job in the field 

of audio processing by utilizing spectrograms, which is a 

widely used technique for representing sound. It eliminates 

the requirement of conventional audio processing methods 

by relying on standard data preparation rather than manually 

creating feature vector. 

 

The architecture of CNN as explained by Goodfellow et al11, 

leverages spatial hierarchy and local connectivity to 

automatically learn and extract meaningful features from 

grid-like data, such as images. Nowadays, these are 

extensively being used in various applications including 

image classification9, object detection8, image 

segmentation15, face recognition2, assessing the risk of 

Android applications5,7, detecting improper face mask4 and 

healthcare imaging27,28 etc.  

 

By training on labeled datasets, CNNs excel at tasks like 

distinguishing objects within images, localizing objects, 

segmenting images into meaningful regions, identifying and 

verifying individuals based on facial features and aiding in 

medical imaging analysis. These capabilities highlight the 

potential of CNNs in advancing medical diagnostics, 

particularly in identifying irregularities in cardiovascular 

functions. The components of CNN, their functions and all 

other significant problems were discussed in detail by 

Albawi et al1. They also listed the factors that affect CNN's 
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effectiveness. The absence of training samples with 

annotations is the fundamental obstacle to the DL-based 

classification of medical images. Wang et al29 showed how, 

for small training samples, fine-tuning greatly increased the 

classification accuracy of liver lesions.  

 

Based on the electroencephalography (EEG) spectrogram 

data, Mandhouj et al21 created a deep CNN model that was 

effective in identifying and categorizing epilepsy seizures. 

The experimental findings demonstrated the effectiveness of 

the suggested strategy, which had an average accuracy rate 

of 98.22% in identifying EEG signals. The approach for 

classifying ECG arrhythmias proposed by Huang et al16 used 

two-dimensional (2D) deep CNN. Using the short-term 

Fourier transform (STFT), five different forms of ECG time-

domain data were first transformed into time-frequency 

spectrograms. Finally, ECG arrhythmia types were 

identified and classified using spectrograms of five different 

arrhythmia types as inputs to the 2D-CNN.  

 

Kaur et al20 proposed a unique framework based on grid-

search optimization to develop a DL model to predict the 

early onset of Parkinson's disease, where several 

hyperparameters had to be established and tweaked for 

evaluation of the resulting DL model. Audio signal 

processing is the process of applying complex algorithms 

and methods to work with audio signals. Audio signals (both 

digital and analog) are used to represent sound. Binary 

representations contain digital signals, while electrical 

signals contain analog signals. The time-frequency bands 

must be balanced and unwanted noise must be removed 

using this technique. Audio signal processing has a focus on 

computational methods for manipulating sounds. It 

minimizes or eliminates undesired noise like echo and over-

modulation by utilizing a variety of techniques. 

 

Ming et al22 focused on the modeling and de-noising of audio 

signals and applied broadly a variety of fundamental 

concepts from digital signal processing before performing 

spectrum analysis and applying filters to the audio signals. 

The processing of audio signals in this work was realized 

using the fundamental concepts of digital signal science and 

the processing of speech signals was accomplished 

extensively using signal extraction, amplitude-frequency 

transform, Fourier transform, filtering and other methods. A 

review of contemporary deep learning techniques for 

handling audio signals was carried out by Purwins et al24.  

Hershey et al14 classified the soundtracks of a dataset of 70M 

training videos (5.24 million hours) using 30,871 video-level 

labels utilizing various CNN architectures. The research 

investigated fully connected deep neural network (DNN), 

ResNet, AlexNet, VGG and Inception.  

 

Rong25 suggested a novel machine learning (ML) method for 

categorizing audio. The author discussed the four-layer 
hierarchical structure of audio data as well as the three 

different categories of audio data features: short time energy, 

zero crossing rate and mel-frequency cepstral coefficients 

(MFCCs) which were further extracted to create the feature 

vector. The research finally discussed the use of the support 

vector machine classifier with a Gaussian kernel to 

categorize audio data.  

 

Numerous studies have employed various methods, 

including segmentation, down sampling, feature extraction 

and classification to forecast heart disease. Identifying 

abnormal behaviors in a certain context is both a challenge 

and a necessity since we can quickly address a problem by 

detecting an anomaly. A typical heartbeat has a distinct 

pattern of "lub dub, dub lub," with the time between each 

beat being longer than the time between each beat and 

typically beats between 60 and 100 times per minute (lub and 

dub). With symptoms of numerous heart diseases, a murmur 

heartbeat sound has a noise pattern that whooshes, roars, 

rumbles, or turbulent fluid between lub to dub or dub to lub.  

Omarov et al23 implemented ML techniques for the detection 

of heart disease using phonocardiogram (PCG) signals. 

 

Gomes et al10 described a system for categorizing cardiac 

sounds in the PASCAL challenge. The S1 and S2 heart 

sounds, where S1 is lub and S2 is dub, were found using an 

algorithm. To reduce the noise in such signals, they first 

employed a band-pass filter after using MATLAB decimate 

function on the original sound stream. The average Shannon 

energy was then applied, which helped to clearly detect the 

peaks of the heart sound signal. The segmentation of the 

heartbeat sound was achieved using an algorithm in which 

the maxima and minima locations of the sound signal were 

located. The model was trained using the J48 and multilayer 

perceptron method. Similarly, Jadhav et al17 suggested a 

novel method of categorizing heart sounds into the normal 

or murmur category using a peak identification approach 

based on Shannon energy envelope calculation and neural 

networks. 

 

A cutting-edge classifier for the early diagnosis of cardiac 

diseases was developed by Wolk et al30 using CNN and 

multipart interactive training. Over 93% accuracy was 

achieved in the experiments utilizing the ResNet pre-trained 

network. 

 

Kaisti et al19 proposed a technique that employed 

miniaturized inertial sensors to assess the chest's pre-cordial 

translational and rotational motions. The algorithm 

eliminated motion artifacts chose the optimal axis from the 

multi-axial accelerometer and gyroscope data sets and 

located beats using two detection concepts based on the 

signal envelope and signal morphology. The authors 

compared the detection performance between the sensor 

modalities in two study groups: (i) healthy subjects and (ii) 

heart disease patients. The research also took account of the 

beat-to-beat detection accuracy and estimated the heart rate. 

For healthy people, the average true and positive prediction 
rates of beat detection were 99.9% and 99.6% whereas for 

heart disease patients, these rates ranged from 95.9% and 

95.3%.  
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Although high-accuracy beat detection was accomplished 

for heart disease patients, location matching was found to be 

less accurate in such individuals when compared to healthy 

subjects. Rubin et al26 described an automated heart sound 

classification technique that blends deep CNNs and time-

frequency heatmap representations. 

 

From the literature review, it is clear that various DL 

methods are used for the classification of heartbeat sounds; 

however, these are limited by things such as large, annotated 

and high-dimensional datasets. The proposed method 

overcomes this drawback by combining spectrogram 

analysis and DL for extracting features. Further, the 

proposed approach combines clinical and manually gathered 

data (via a mobile application), thereby augmenting 

accessibility for a wider demographic. The proposed 

approach demonstrates efficacy even with poor quality audio 

signals. It overcomes the constraint of data accessibility 

encountered by earlier research. 

The main aim of this study is to create an accurate, 

automated approach for detecting heartbeat 

anomalies using time-frequency heatmaps and CNN model. 

The primary contributions include: 

 

 Creation of a system that can precisely classify irregular 

heartbeats using time-frequency heatmaps and CNN. 

 Examining the best accuracy that is attained by adjusting 

hyperparameters. 

 

Material and Methods 
The workflow used in this methodology is depicted in figure 

1. Four separate phases comprise the entire methodology: 

data collection, data preparation, feature extraction and 

model building. This is followed by hyperparameter tuning 

and result analysis. The description of each phase is given as 

follows: 

 

 
Fig. 1: Workflow of the proposed methodology. 
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Data Collection: The heartbeat sound dataset used in this 

work is obtained from Kaggle18. It was first used in a ML 

competition for heartbeat sound classification3. According to 

the source of the data, it is divided into two sets. The first set 

A consists of 176 audio signals which are collected from the 

general population using the I-Stethoscope Pro iPhone 

application, whereas the second set B is made up of 656 

audio signals collected from a clinical trial carried out in 

hospitals using the DigiScope digital stethoscope. 

 
Data Preparation: To ensure stable data representation and 

to retain contextual information, this study used files that are 

longer than 4 seconds. This approach means that the length 

of every sample in the dataset is uniform, which helps to 

make data analysis easier and more efficient by keeping ML 

and DL models training consistent at all times. The reason 

for choosing a 4-second segment is to ensure that training 

and analysis are not burdened by an unmanageable amount 

of data, while at the same time including enough contextual 

information in audio signals. For longer segments, more 

computational resources are needed. A too short segment 

would not produce accurate data for analysis.  

 

To reduce noise resulting from physical contact between the 

microphone and the body, an offset computation is utilized 

to account for the extra space in audio files. 

 

The labels provided in the dataset are used to classify the 

audio files as ‘normal’ or ‘abnormal’ after the proper 

segment size has been chosen. This labeling helps to classify 

heartbeat sounds as either indicative of a healthy heart or 

exhibiting an anomaly. Subsequently, the data is shuffled to 

avoid any bias or pattern in the sequence. The shuffling step 

helps in ensuring the model's robustness and generalization 

performance, as the model does not learn any particular 

sequence or pattern in the input data. The resulting dataset at 

this stage contains two types of audio data: 148 normal and 

96 abnormal audio files. The data is subsequently split into 

training and validation data in the ratio of 80% (195 audio 

files) and 20% (49 audio files) respectively. The 1D time 

series input segments are transformed into 2D spectrograms 

(heatmaps) using MFCCs, which display the distribution of 

signal energy over time and frequency.  

 

Feature Extraction: Mel spectrograms and MFCCs are 

widely used in audio signal processing and analysis, 

particularly for speech and music recognition tasks. Both 

representations capture essential information from the audio 

signal, transforming it into a format that facilitates pattern 

recognition and classification. Mel spectrograms are 

computed from the STFT of an audio signal, which converts 

the time-domain signal into a time-frequency representation. 

The STFT is performed by applying a sliding window to the 

signal and computing the discrete Fourier transform (DFT) 

of the windowed segments. The Fourier transform allows us 
to represent the signal as a sum of sinusoids with different 

frequencies and amplitudes. Mathematically, the DFT is 

defined using eq. (1): 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−
𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0                                                   (1) 

 

where 𝑥(𝑛) denotes the input signal, 𝑁 represents the 

quantity of samples, 𝑗 is an imaginary unit (𝑗2 = −1) and 

𝑋(𝑘) serves as the frequency-domain portrayal of the said 

signal.  

 

Upon computation of the STFT, the resultant spectrogram is 

converted to the Mel scale, a scale that is perceptually 

motivated and strategically designed to more accurately 

portray human auditory perception. The Mel scale 

emphasizes lower frequencies while compressing higher 

frequencies, simulating the non-linear frequency resolution 

of the human auditory system. MFCCs are derived from the 

Mel spectrogram. These are obtained through the application 

of the discrete cosine transform on the logarithmic Mel-

scaled power spectrum. This process decorrelates the 

spectral coefficients, resulting in a compact and robust 

representation of the audio signal. MFCCs capture the 

spectral envelope of the signal, which is particularly useful 

for distinguishing different phonemes in speech and 

identifying musical characteristics such as timbre. 

 

In this study, a custom function is defined to process the 

audio data by extracting MFCC features. This function takes 

an audio file's path and an offset as input parameters, loads 

the audio file with duration of 4 seconds starting at the given 

offset, computes the Mel spectrogram and subsequently 

extracts 40 MFCC features. This function is applied to both 

the training and validation datasets, obtaining feature arrays 

and their corresponding labels. The audio data, stored in the 

Waveform Audio File Format (.wav), represents 1D time 

series signals. Transforming these signals into 2D heatmaps 

like Mel-spectrograms and MFCCs, captures the time-

frequency patterns of the signals. It makes them more 

informative for analysis purpose.  

 

Acquiring data using different tools like digital stethoscope 

or a cell phone microphone, can result in variations in 

amplitude ranges. The process of converting data into the 

frequency domain yields more consistent and reliable 

results. To facilitate the efficient use of CNNs for 

classification tasks, the original time series audio data in this 

study is converted into 2D heatmaps. When compared to 

using raw time series data alone, this leads to the extraction 

of more relevant and discriminative features from the audio 

signal which improves classification performance. The study 

intends to improve the efficacy of the presented framework 

by developing an accurate and robust classifier for 

differentiating between usual and anomalous cardiac sounds 

by using CNNs on Mel spectrograms and MFCCs. 

 

Model Building: The 40×130 MFCC heatmaps that 

represent cardiac sound segments, are precisely analyzed 

and classified by the CNN architecture used in this work. 
Convolutional layers, fully connected layers and SoftMax 

classifiers are the components of this CNN that work 

together harmoniously to produce a binary classification 



Research Journal of Biotechnology                                                                                                 Vol. 20 (12) December (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/2012rjbt2550264      259 

output that indicates whether the input segment corresponds 

to a normal or abnormal heart sound. 

 

Four convolutional layers make up the model and they are in 

charge of gathering and extracting local attributes from the 

input MFCC heatmaps. Four max-pooling layers are added 

after these convolutional layers to reduce the feature maps' 

spatial dimensions and improve the model's capacity to 

manage translation variation. To reduce overfitting and 

improve the model's ability to generalize, the architecture 

additionally has four dropout layers. A global average 

pooling layer efficiently condenses the obtained 

characteristics into a fixed-size vector by combining the 

feature maps. Lastly, a dense layer is used to perform the 

classification task using the aggregated feature vector. 

 

The convolutional layers use the rectified linear unit (ReLU) 

activation function. ReLU is preferred because it can solve 

the vanishing gradient problem and is computationally 

efficient in both the training and validation stages. ReLU's 

selection as the activation function is a key factor in 

improving the CNN's general resilience and performance 

which helps it to distinguish between normal and abnormal 

heart sounds. 

 

Adam is selected to be the optimizer for this study because 

of its widespread use in DNN optimization. Adam can 

handle big datasets and parameters because it is 

computationally efficient in terms of both time and memory. 

Moreover, Adam is insensitive to gradient scaling, which 

leads to increased stability and reduced responsiveness to the 

selection of hyperparameters. 

 

Hyperparameter Tuning: In order to achieve optimal 

performance, the study explores various sets of 

hyperparameters.  

 

 Learning Rate: One crucial hyperparameter that 

controls the number of iterations needed for the model to 

minimize the loss function is the learning rate. Selecting 

a larger value of learning rate allows the model to learn 

faster. The drawback is that there is a chance that it will 

surpass the minimum loss function. On the other hand, a 

lower value of learning rate increases the likelihood of 

obtaining the minimum loss function though it requires 

more memory. 

 Batch Size: The batch size is very important in 

determining the number of subsamples of the input 

training data used in each iteration. A smaller value of 

batch size accelerates the learning process but it may lead 

to variability in the accuracy of the validation dataset. On 

the other hand, a larger value of batch size delays the 

learning process while declining the variance in the 

accuracy of the validation dataset. 

 Epochs: Small value of epochs can result in underfitting 

which means that the model has not learned enough from 

the training dataset. Too many epochs can result in 

overfitting indicate that the model performs well on the 

training dataset but struggles to generalize to new data. 

The optimal number of epochs must be determined to 

achieve the best results. 

 

Evaluation Metrics Used: The proposed model is evaluated 

using the evaluation metrics, namely, Precision, Recall, F1-

Score, Accuracy and Loss. These are computed from the 

fields of the confusion matrix i.e. True Positive (TP), False 

Positive (FP), True Negative (TN) and False Negative (FN). 

TP refers to the correct classification of abnormal heartbeat 

sounds as abnormal. FP denotes the incorrect classification 

of normal heartbeat sounds as abnormal. TN represents the 

accurate classification of normal heartbeat sounds falling 

within the normal category, while FN signifies the mistaken 

classification of abnormal heartbeat sounds as normal. By 

utilizing these conventions, the ensuing discussion provides 

insights into the classification outcomes and their 

implications for accurately identifying normal and abnormal 

heartbeat sounds. 

 

 Precision: Precision is defined as the ratio of TP 

predictions (i.e. instances correctly identified as 

belonging to a specific class) to the total instances 

predicted as belonging to that class. It measures the 

accuracy of positive predictions made by the classifier. 

Mathematically, precision is defined using eq. (2): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (2) 

 

 Recall (Sensitivity): It is defined as the ratio of TP 

predictions (i.e. correctly identified instances of a class) 

to the total actual occurrences of that class. It measures 

the classifier's ability to identify all relevant instances of 

a class. Mathematically, recall is defined using eq. (3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
                                                        (3) 

 

 F1-Score: It is the harmonic mean of precision and 

recall. It is particularly useful when working with 

imbalanced datasets because it provides a single metric 

that balances the trade-off between precision and recall. 

Mathematically, F1-Score is defined using eq. (4): 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                            (4) 

 

 Accuracy: The correct number of predictions to total 

instances in the dataset is called accuracy. Although it 

gives a broad picture of the classifier's performance, it 

can be misleading when working with datasets that are 

unbalanced. Mathematically, accuracy (%) is defined 

using eq. (5): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 *100                        (5) 

 

 Loss: The metric of loss measures the discrepancy 

between the true value of a single sample and the value 



Research Journal of Biotechnology                                                                                                 Vol. 20 (12) December (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/2012rjbt2550264      260 

projected by the model. In this study, the categorical 

cross-entropy loss function is utilized. Mathematically, 

loss is defined using eq. (6): 

 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ [𝑁

𝑖=1 yilog 𝑦̂𝑖 + (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]    (6) 

 

where N stands for the sample size, 𝑦𝑖 ∈ {0,1} is the true 

label of the 𝑖𝑡ℎ sample and 𝑦̂𝑖  is the predicted probability 

of the positive class for that sample. 

 

Results and Discussion 
A 64-bit operating system and Intel® CoreTM i5-10300H 

processor together with 8 GB of installed memory (RAM) 

along with Python (version 3.7.15) with Numpy (version 

1.21.6), Pandas (version 1.3.5), Librosa (version 0.8.1), 

Sklearn (version 1.0.2) and Keras (version 2.9.0) libraries 

are used while conducting the experiments. In the proposed 

2D CNN model, learning rate, batch size and the number of 

epochs are three critical parameters. Optimizing these model 

parameters is essential to achieve the best classification 

performance for PCG heartbeat signals. A series of 

experiments are conducted to assess the impact of learning 

rate and batch size on the performance of the proposed 2D 

CNN model. Initially, trials are performed with different 

learning rates while keeping the batch size and number of 

epochs constant. Table 1 presents the variations in the 

model's accuracy with changes in the learning rate.  

 
Figure 2 illustrates the variation in the model's validation 

accuracy as the learning rate is altered from 0.0001 to 1.0 

while keeping the batch size constant at 128 and training the 

model for 300 epochs. It is evident that the validation 

accuracy increases as the learning rate is raised. The 

validation accuracy reaches its peak value of 95.91% at a 

learning rate of 0.01, which is a commonly used value in the 

literature. However, beyond this point, the validation 

accuracy declines sharply to 57.14% when the learning rate 

is set to 1.0. Consequently, a learning rate of 0.01 emerges 

as the most optimal setting for the model, providing the 

highest validation accuracy. 

 

Table 1 

Validation accuracy with varying learning rates for 

batch size = 128 and epochs = 300 

Learning Rate Validation Accuracy 

0.0001 0.71428 

0.001 0.79591 

0.01 0.95918 

1.0 0.57142 

 

After determining the optimal learning rate for the model, 

the next step is to experiment with different batch sizes. The 

model is trained with epochs = 300, learning rate = 0.01 and 

batch sizes ranging from 16 to 256. The results of these 

experiments, with a fixed learning rate and epochs with 

varying batch sizes, are presented in table 2. As shown in 

figure 3, the model achieves highest validation accuracy of 

93.87% at a batch size of 16. The validation accuracy 

gradually decreases up to a batch size of 64. There is a 

sudden increase in validation accuracy at a batch size of 128, 

but it drops significantly to 69.38% when the batch size is 

increased to 256. Based on these findings, a batch size of 16 

is determined to be the optimal choice for the model. 

 

After determining the optimal learning rate and batch size, 

the accuracy of the proposed model is evaluated by gradually 

increasing the number of epochs during training. Table 3 

presents the validation accuracy with varying epochs (from 

50 to 400) for batch size set to 16 and learning rate set to 

0.01. By comparing the outcomes of different parameter 

configurations, the goal is to identify the most effective 

combination of learning rate and batch size, which would 

improve the overall performance and generalizability of the 

2D CNN model in heartbeat anomaly detection.

 

 
Fig. 2: Average validation accuracy with varying learning rates for batch size = 128 and epochs = 300  
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Table 2 

Validation accuracy with varying batch sizes for learning rate = 0.01 and epochs = 300  

Batch Size Validation Accuracy 

16 0.93877 

32 0.83673 

64 0.75510 

128 0.85714 

256 0.69387 

 

 
Fig. 3: Average validation accuracy with varying batch sizes for learning rate = 0.01 and epochs = 300 

 

Table 3 

Validation accuracy with varying epochs for batch size = 16 and learning rate = 0.01 

Epochs Validation Accuracy 

50 0.83691 

100 0.85714 

150 0.77551 

200 0.89795 

250 0.91836 

300 0.95918 

350 0.93877 

400 0.8776 

 

 
Fig. 4: Average validation accuracy with varying number of epochs for batch size = 16 and learning rate = 0.01 
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The change in model accuracy with varying epochs is 

visualized in figure 4. It shows that the model achieves the 

best accuracy of 95.92% at 300 epochs.  

 

After performing hyperparameter tuning, the optimal values 

for the parameters are identified. These values are used to 

build the final CNN model, which is then trained and 

evaluated. The chosen parameters for the final model are 

shown in table 4. 

 

Table 4 

Parameters of the final proposed CNN model. 

Parameters Values 

Learning Rate 0.01 

Optimiser Adam 

Batch Size 16 

Epochs  300 

 

With these hyperparameters, the model is trained. Loss and 

accuracy for training and validation parts of the dataset are 

recorded over the epochs ranging from 0 to 300 as shown in 

figure 5 and figure 6 respectively. Figure 5 shows that the 

model starts with an initial training and validation loss of 

approximately 5.5. A significant drop is observed in the first 

50 epochs where both losses reduce to around 1.0, marking 

a rapid learning phase. Beyond 50 epochs, the losses 

stabilize, showing minor fluctuations while remaining below 

1.0. By the final epoch, the training loss reaches 

approximately 0.4 and the validation loss is around 0.5 

demonstrating effective convergence, minimal 

generalization error and strong performance of the model 

with optimal hyperparameters.  

Figure 6 illustrates that the model starts with an initial 

accuracy of approximately 60% for both training and 

validation parts of the dataset. During the first 50 epochs, 

accuracy improves significantly, reaching around 83%. By 

the final epoch, training accuracy reaches close to 98% while 

validation accuracy stabilizes at approximately 96%, 

indicating excellent generalization and strong performance. 

 

A thorough evaluation of the classifier's capacity to 

distinguish between normal and abnormal heart sounds for 

the validation data is provided in the classification report in 

figure 7. It provides an assessment of the proposed CNN 

model to detect heartbeat anomalies. A number of significant 

metrics that highlight the performance of the model, are 

shown in the report.  

 

The model provides a precision of 0.93 for the abnormal 

class, which assesses the accuracy of positive predictions. 

This shows that when the model correctly predicts an 

abnormal heartbeat sound, it does so 93% of the time. The 

precision is 1.00 for the normal class which demonstrates a 

perfect accuracy in predicting normal heartbeat sounds. The 

proposed model identifies all real abnormal heartbeat sounds 

with a recall value of 1.00 for the abnormal class. Recall 

value for the normal class is 0.90 which means that only 90% 

of the actual heartbeat sounds are captured by the model. The 

F1-Score is a metric that combines precision and recall. For 

abnormal class, its value is 0.97 and for the normal class it 

is 0.95. The support metric reveals that there are 28 samples 

of abnormal and 21 samples of normal heartbeat sounds. The 

overall accuracy provided by the proposed model is 96%. 

 

 
Fig. 5: Loss curves for proposed CNN model. 

 

 
Fig. 6: Accuracy curves for proposed CNN model. 



Research Journal of Biotechnology                                                                                                 Vol. 20 (12) December (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/2012rjbt2550264      263 

 
Fig. 7: Classification report for validation data using proposed CNN model 

 

Conclusion 
This study proposed a time-frequency heatmap and deep 

CNN-based approach for automating heartbeat anomaly 

detection. The proposed approach demonstrated the ability 

of CNN to effectively classify recordings of normal and 

abnormal heartbeats. The proposed CNN model provided an 

overall accuracy of 96% with precision, recall and F1-Score 

as 0.96. The proposed work proved its efficacy in finding 

patterns in heart sound data by using MFCCs for feature 

extraction and creating a customized CNN architecture. The 

efficacious execution of proposed approach holds the 

potential to exert a substantial influence in the field of 

medicine, enabling medical practitioners to promptly 

identify and manage cardiac complications, thereby 

enhancing patient outcomes and elevating their standard of 

living. 

 

In future, we intend to focus to encompass a plethora of 

distinct domains in order to further augment the efficacy and 

generalizability of the heartbeat anomaly detection 

paradigm. To complement the MFCCs and to enhance the 

classifier's ability to distinguish normal heart sounds from 

abnormal heart sounds, additional characteristics such as 

spectral and temporal aspects of the audio data will be 

considered. The dataset will be expanded to encompass more 

diverse and extensive recordings derived from a variety of 

sources, demographics and medical conditions using big 

data techniques12,13. It will help the classifier capturing the 

heart sounds' variability more effectively, thus providing 

more robust and accurate results. 
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